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Tumor cells are capable of limiting antitumor CD8+ T cell responses through their cell surface expression of PD-L1. In addition to
PD-1 expressed by CD8+ T cells, PD-L1 also binds to CD80 expressed by CD8+ T cells. The influence of the PD-L1/CD80
interaction on CD8+ T cell function has not been fully characterized, so we sought to investigate the impact of the PD-L1/CD80
interaction on PD-L1-induced apoptosis of activated CD8+ T cells. We found that CD8+ T cells that lacked CD80 expression
got activated to the same extent as wild-type CD8+ T cells, but when cultured with anti-CD3 and PD-L1/Fc protein, activated
CD8+ T cells that lacked CD80 expression survived better than activated wild-type CD8+ T cells. These findings indicate that
PD-L1 induces apoptosis in activated CD8+ T cells in part by signaling through CD80. Thus, in the design and
implementation of checkpoint blockade therapies that target PD-L1, it is essential that both binding partners for PD-L1, PD-1,
and CD80 are considered.

1. Introduction

Cell surface expression of the checkpoint protein pro-
grammed death ligand 1 (PD-L1, also named B7-H1 and
CD274) is a potent mechanism of immune evasion employed
by a wide variety of tumor types and is the target of sev-
eral checkpoint blockade immunotherapies for cancer [1].
PD-L1 limits an antitumor immune response by signaling
through its receptors, PD-1 and CD80 (also named B7-1),
expressed on the surface of activated CD8+ T cells. The influ-
ence of the PD-L1/PD-1 interaction on CD8+ T cell function
has been extensively characterized and is known to limit
CD8+ T cell responses by inhibiting TCR signaling, thus
restricting CD8+ T cell survival, proliferation, and cytokine
production [2, 3]. The PD-L1/PD-1 interaction is the target
of the checkpoint blockade therapies pembrolizumab and
nivolumab. Both of these drugs are humanized antibodies
that bind to PD-1 and prevent PD-L1 from binding to
PD-1, thus eliminating the negative signaling delivered to
CD8+ T cells by PD-L1 [4, 5]. To date, pembrolizumab

is approved for use in metastatic melanoma, both squamous
and nonsquamous non-small-cell lung cancer (NSCLC), head
and neck squamous cell carcinoma, and Hodgkin’s lym-
phoma. Nivolumab is approved for the treatment of metasta-
tic melanoma, both squamous and nonsquamous NSCLC,
and renal cell carcinoma. In clinical trials for both drugs,
significant portions of enrolled patients exhibited durable
responses or complete tumor elimination [6–14]. There are
additional checkpoint blockade therapies, durvalumab, atezo-
limuab, and avelumab, which bind to PD-L1, blocking the
interaction of PD-L1 with both PD-1 and CD80. Currently,
durvalumab is approved for the treatment of urothelial carci-
noma, atezolimuab is approved for the treatment of NSCLC
and urothelial carcinoma, and avelumab is approved for the
treatment of Merkel cell carcinoma [15–18]. As durvalumab,
atezolimuab, avelumab, and other drugs that target the
PD-L1/CD80 interaction inaddition to thePD-L1/PD-1 inter-
action are being designed and implemented, it is necessary to
gain a better understanding of how the PD-L1/CD80 interac-
tion is involved in limiting antitumor CD8+ T cell responses.
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The interaction between PD-L1 and CD80 was first char-
acterized in 2007 [19] but has not been extensively studied
since then. The interaction occurs in both mice and humans
and has an affinity that is threefold weaker than that of the
PD-L1/PD-1 interaction and threefold stronger than that of
the CD28/CD80 interaction [19, 20]. When mouse CD4+ T
cells were cultured with plate-bound PD-L1 and anti-CD3,
proliferation and production of proinflammatory cytokines
were inhibited, even if the CD4+ T cells lacked expression
of PD-1 [19]. These results were the first indication that the
PD-L1/CD80 interaction functions to limit T cell responses.
In related studies, when the PD-L1/CD80 interaction was
blocked by an antibody and the PD-L1/PD-1 interaction
was left intact, CD8+ T cells exhibited an extended period
of expansion and decreased induction of anergy in an
in vivo peptide immunization model [21]. In a cardiac allo-
graft model in mice, specifically blocking the PD-L1/CD80
interaction accelerated graft rejection and led to an increased
production of proinflammatory cytokines [22]. Similarly,
using the nonobese diabetic mouse model, the blockade of
the PD-L1/CD80 interaction accelerated diabetes in older
mice [23]. All together, these findings demonstrate that
CD80 expressed by T cells can deliver “reverse signaling” into
the T cell upon interaction with PD-L1 that is anti-
inflammatory and protolerogeneic. Accordingly, tumor cells
are likely capable of inhibiting antitumor CD8+ T cell
responses by signaling through both PD-1 and CD80.

In this study, we specifically investigated the role of
PD-L1/CD80 signaling in limiting the survival of activated
CD8+ T cells. During an immune response, activated CD8+

T cells go through a period of expansion; then, after antigen
clearance, there is a contraction phase during which a major-
ity of the activated CD8+ T cells die by apoptosis. The con-
traction phase is largely mediated by the mitochondrial
pathway of apoptosis [24–26], and we previously demon-
strated that PD-L1 signaling is involved in the induction of
apoptosis of activated CD8+ T cells during the contraction
phase. We found that when either the PD-L1/PD-1 interac-
tion or the PD-L1/CD80 interaction was blocked, activated
CD8+ T cells expressed decreased levels of the proapoptotic
protein Bim [27], indicating a novel role for PD-L1/CD80
signaling in limiting the survival of activated CD8+ T cells.
In this study, CD80-deficient mice were used to demonstrate
that the PD-L1/CD80 interaction contributes to the induc-
tion of PD-L1-induced apoptosis in activated CD8+ T cells.
This new information is important to consider in the design
and implementation of checkpoint blockade therapies that
target PD-L1, as therapies that targetly block the PD-L1
interaction with both PD-1 and CD80 may be more effective
than those that only block the PD-L1/PD-1 interaction.

2. Materials and Methods

2.1. Mice. C57BL/6J wild-type (WT) and CD80-knockout
(KO) mice (B6.129S4-Cd80tm1Shr/J) were purchased from
Jackson Laboratories. Homozygous CD80-KO mice were
bred from heterozygous CD80-KO mice. Mice were used at
6–12 weeks of age. Studies were conducted in accordance
with the National Institutes of Health guidelines for the

proper use of animals in research and with local Institutional
Animal Care and Use Committee approval.

2.2. In Vitro CD8+ T Cell Activation and Culturing with
Fusion Proteins. The spleen and lymph nodes of WT and
CD80-KO mice were harvested at 6–12 weeks of age. The
cells were activated with concanavalin A (ConA, 5μg/mL,
L7647, Sigma-Aldrich) for 48 hours. Following activation,
CD8+ T cells were purified from the whole cell population
(EasySep CD8+ T cell negative selection kit, Stem Cell Tech-
nologies) and were incubated with plate-bound PD-L1/Fc or
recombinant human IgG1/Fc (control/Fc) fusion proteins
(R&D Systems) for 48 hours in the presence of anti-CD3
(clone 2C11, BD Biosciences) in ConA-conditioned media
(RPMI 1640 medium with L-glutamine and 25mM HEPES
(Lonza) with 10% FBS (Gibco), 1U/mL penicillin (Gibco),
and 1μg/mL streptomycin (Gibco)). Live cells were counted
by Trypan blue (Millipore) exclusion using a hemocytometer.

2.3. Western Blotting. Cells were lysed on ice with lysis buffer
containing 20mM Tris, 100mM NaCl, 1mM EDTA, 0.5%
Triton X-100, and protease inhibitors (Millipore). 0.5× 106
cells were lysed for each condition and run on SDS-PAGE
gels, transferred to nitrocellulose (Bio-Rad), and blotted
using standard procedures. Rat anti-mouse Bim mAb (3C5)
was purchased from Enzo Life Sciences. Goat anti-rat HRP
was purchased from BioLegend. Rabbit anti-mouse actin
mAb (D18C11) was purchased from Cell Signaling. Goat
anti-rabbit HRP was purchased from Bio-Rad.

2.4. Flow Cytometry Analysis. Samples were run on a BD
Accuri™ C6 Flow Cytometer and analyzed by BD Accuri C6
Software. For analysis, gates were drawn from live CD8+ cells.
Fluorochrome-conjugated antibodies against CD8, CD86,
and PD-1 were purchased from BioLegend or eBiosciences.

2.5. StatisticalAnalysis.Atwo-sidedpairedStudent’s t-testwas
used to assess statistical differences in experimental groups.
A p value< 0.05 was considered statistically significant.

0

5

10

15

20

25

30

35

40

45

50

Wild type CD80 knockout

%
 ce

ll 
su

rv
iv

al
 

ns

Figure 1: CD80-KO and WT CD8+ T cells survive at equal levels
after ConA activation. WT and CD80-KO cells were activated
with ConA, then harvested for analysis. Live cells were counted by
Trypan blue exclusion (n = 3, ±SD, p = 0 24, ns: not significant).
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3. Results

3.1. Characterization of CD8+ T Cells Activated in the
Absence of PD-L1/CD80 Signaling. In order to investigate
the influence of PD-L1/CD80 signaling on activated CD8+

T cell survival using CD80-KO CD8+ T cells, we first needed
to determine whether or not CD80-KO andWT CD8+ T cells
were activated equivalently. We used an in vitro culture
system in which splenocytes were harvested from naïve WT
and CD80-KO mice and activated for 48 hours with ConA.
Cells were then harvested for analysis. CD80-KO and WT
CD8+ T cells survived at equivalent levels after ConA activa-
tion as shown in Figure 1. We also assessed the expression of
cell surface markers of activation, including CD86 and PD-1,
and found that CD80-KO and WT CD8+ T cells expressed
equivalent levels of these markers after in vitro activation
(Figure 2). Since PD-1 expression was equivalent between
CD80-KO and WT CD8+ T cells, it appears that the defect
in CD80 expression in the CD80-KO CD8+ T cells does not
affect the expression of PD-1 by these cells. Based on these
findings, we concluded that CD8+ T cells get activated in
our in vitro culture system equivalently in the absence of
PD-L1/CD80 signaling.
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Figure 2: CD80-KO and WT CD8+ T cells express equivalent levels of cell surface markers of activation after ConA activation. WT and
CD80-KO cells were activated with ConA, then harvested for analysis. Cells were then analyzed by flow cytometry. (a) Histograms
are of live CD8+ cells and representative of 3 separate experiments. (b) Mean fluorescent intensity (MFI) for PD-1 and CD86 (n = 3, ±SD,
not significant).
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Figure 3: CD80-KO CD8+ T cells survive better than WT CD8+ T
cells when cultured with PD-L1/Fc. ConA-activated WT and
CD80-KO CD8+ cells were cultured with anti-CD3 and either
recombinant mouse PD-L1/Fc or control/Fc for 48 hours, then
harvested for analysis. Live cells were counted by Trypan blue
exclusion (n = 3, ±SD, ∗p ≤ 0 05).
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3.2. Activated CD8+ T Cells Survive Better in the Absence of
PD-L1/CD80 Signaling. We next went on to investigate the
influence of PD-L1/CD80 signaling on the survival of acti-
vated CD8+ T cells. We used the same in vitro activation with
ConA as above; then, after harvesting the activated cells, we
isolated the activated CD8+ T cells and cultured them for
an additional 48 hours on plates coated with anti-CD3 and
either PD-L1/Fc or control/Fc protein. Cells were then
harvested for analysis. Activated CD80-KO and WT CD8+

T cells cultured with anti-CD3 and control/Fc protein were
recovered at equal levels after the culture period, but more
activated CD80-KO CD8+ T cells cultured with anti-CD3
and PD-L1/Fc protein were recovered than activated WT
CD8+ T cells cultured with anti-CD3 and PD-L1/Fc
(Figure 3). These data indicate that PD-L1/CD80 signaling
limited the survival of activated CD8+ T cells.

3.3. Bim Expression Is Decreased in Activated CD8+ T Cells in
the Absence of PD-L1/CD80 Signaling. We went on to
investigate the mechanism by which PD-L1/CD80 signaling
limited the survival of activated CD8+ T cells. CD80-KO
and WT CD8+ T cells were activated and cultured with
anti-CD3 and PD-L1/Fc protein as described above; then,
the expression levels of the proapoptotic protein Bim were
analyzed by Western blotting. As shown in Figure 4(a), acti-
vated CD80-KO CD8+ T cells cultured with anti-CD3 and
PD-L1/Fc protein expressed decreased levels of Bim as

compared to WT cells. This finding was supported by two
separate experiments. The Bim signals from the Western
blots were quantified using ImageJ and normalized to actin
signals as shown in Figure 4(b). This finding demonstrates
that PD-L1/CD80 signaling contributes to the induction of
apoptosis in activated CD8+ T cells by inducing increased
expression of Bim.

4. Discussion

Activated CD8+ T cells are potent killer cells but are
themselves very sensitive to being killed by apoptosis. The
PD-L1/PD-1 signaling pathway is well known to induce apo-
ptosis of activated CD8+ T cells, but the contribution of the
PD-L1/CD80 signaling pathway to apoptosis of activated
CD8+ T cells has not been extensively investigated. In this
study, we demonstrate that PD-L1/CD80 signaling contrib-
utes to the induction of apoptosis of activated CD8+ T cells
by inducing increased expression of Bim. We used an
in vitro ConA activation system for our studies and first
confirmed that CD80-KO andWT CD8+ T cells get activated
to the same extent (Figures 1 and 2). We found that there are
no intrinsic differences between CD80-KO and WT CD8+

T cells upon activation. We then went on to culture the
ConA-activated CD8+ T cells with PD-L1 and found that
the CD80-KO CD8+ T cells survived better than the WT
CD8+ T cells (Figure 3). The increased survival of the CD8+
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Figure 4: Decreased Bim protein levels in activated CD80-KO CD8+ T cells cultured with PD-L1 as compared to WT cells. (a) ConA-
activated WT and CD80-KO CD8+ cells were cultured with anti-CD3 (clone 2C11) and either recombinant mouse PD-L1/Fc or control/Fc
(ctrl/Fc) for 48 hours, then harvested for analysis. Cells were lysed and analyzed by Western blotting for Bim and actin protein levels.
Representative of two separate experiments. (b) Bim signals were quantified using ImageJ and normalized to actin signals (n = 2, ±SD,
not significant).
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T cells that lacked PD-L1/CD80 signaling was due, at least in
part, to decreased levels of Bim expression (Figure 4).

The goal of checkpoint blockade therapies that target
PD-L1 expressed by tumor cells is to reactivate an antitumor
CD8+ T cell response; thus, it is crucial that we fully under-
stand the mechanisms by which PD-L1 signaling limits
antitumor CD8+ T cell responses. Based on our findings
reported here, if a checkpoint blockade therapy only inhibits
the PD-L1/PD-1 signaling pathway and leaves the PD-L1/
CD80 signaling pathway intact, then PD-L1 expressed by
tumor cells will still be able to induce apoptosis of tumor-
infiltrating CD8+ T cells by signaling through CD80. It has
also been reported that PD-L1 limits CD8+ T cell responses
in part by inhibiting glycolysis downstream of PD-1 signaling
[28, 29]. It was reported that PD-L1/PD-1 blockade led to a
metabolic reprogramming in activated CD8+ T cells that
resulted in increased rates of glycolysis. This metabolic
switch induced by the PD-L1/PD-1 blockade in CD8+ T cells
was due to increased Akt activation in the absence of PD-1
signaling. Bim expression levels are also regulated by Akt
signaling in CD8+ T cells [30], so it is possible that PD-L1/
CD80 signaling, in addition to influencing Bim expression
levels, may also influence the metabolism of CD8+ T cells.
Continued studies into the influence of the PD-L1/CD80
pathway on CD8+ T cell functions are necessary.

Abbreviations

ConA: Concanavalin A
NSCLC: Non-small-cell lung cancer
PD-L1: Programmed death ligand 1
KO: Knockout
WT: Wild type.
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